THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2024-25 Tutorial 10 solutions 28th November 2024

- The tutorial solutions are written for reference and proofs will be sketched briefly. You should try to fill in the details as an exercise. Please send an email to echlam@math.cuhk.edu.hk if you have any further questions.
- Important: The extra content of this tutorial will not appear in the final exam.
- 1. (a) Let R be a nonzero Noetherian ring, if R has no maximal ideal, then we can inductively find an increasing chain of ideals $I_1 \subset I_2 \subset ...$ such that I_k is strictly contained in I_{k+1} . This is because each I_k is not a maximal ideal, so it is strictly contained in some proper ideal I_{k+1} . However, this contradicts with the ascending chain condition of a Noetherian ring (see HW10 Q3).
 - (b) Proof using (FBC): Let R be a PID, any ideal I is principal, so it is generated by one element, in particular it is finitely generated.

Proof using (ACC): Let R be a PID, let $I_1 \,\subset I_2 \subset ...$ be an increasing chain of ideals in R. Then each $I_k = \langle a_k \rangle$ for some $a_k \in R$ such that $a_{k+1}|a_k$. Suppose that this chain of ideals does not terminates for some finite n > 0, then by replacing $\{I_n\}$ by a subsequence if necessary, we might assume that $a_{k+1} \mid a_k$ but a_k and a_{k+1} are not associate for all k (i.e. $a_k = b_k \cdot a_{k+1}$ for b_k not a unit. Note that this implies that a_1 can be written as a product of an arbitrarily large numbers of non-units. This contradicts with unique factorization of a_0 . This is because the number of non-units factors appearing in the unique factorization of a_0 is constant.

- (c) Let k be a field, consider $k[x_1, x_2, ...]$ the polynomial ring on countably many variables. Note that $k[x_1, ..., x_n]$ is a UFD for any n > 0, since R is a UFD implies that R[t] is a UFD. So for any polynomial f in $k[x_1, x_2, ...]$, it lies in the subring of $k[x_1, ..., x_n]$ for some large enough n, then f regarded as a polynomial in $k[x_1, ..., x_n]$ can be uniquely written as products of polynomials, up to units. Such unique product still remains to be unique in the original ring because polynomials involving the variable x_N for N > n clearly does not appear in any factor of f. On the other hand, $k[x_1, x_2, ...]$ is no Noetherian. Because $\langle x_1 \rangle \subset \langle x_1, x_2 \rangle \subset \langle x_1, x_2, x_3 \rangle \subset ...$ is an increasing chain of ideals that does not terminate at finite n > 0.
- (d) Suppose that φ : R → R is a surjective homomorphism, consider I_k = ker φ^k, then I₁ ⊂ I₂ ⊂ ... is an increasing chain of ideals. So by Noetherian property, it must terminate for some n > 0. Then ker φⁿ = ker φⁿ⁺¹. Now φⁿ⁺¹(x) = 0 implies that φⁿ(x) = 0. Now suppose that φ(x) = 0, then by surjectivity x = φⁿ(y), so that φⁿ⁺¹(y) = 0, but this of course implies that x = φⁿ(y) = 0.
- 2. (a) By Q1b, \mathbb{Z} is Noetherian.

On the other hand, the chain of ideals $J_1 \supset J_2 \supset \dots$ defined by $J_k = 2^k \mathbb{Z}$ is a decreasing sequence of ideals which does not terminate at finite n. So \mathbb{Z} is not Artinian.

(b) By Q1b, k[t] is Noetherian.

Consider the decreasing chain $J_1 \supset J_2 \supset ...$ defined by $J_k = \langle t^k \rangle$. This never terminates for finite n > 0, so it is not Artinian.

(c) Note that we have a homomorphism k → k[t]/⟨tⁿ⟩, which realizes k[t]/⟨tⁿ⟩ as a finite dimensional k-vector space. One can simply see that as vector spaces, k[t]/⟨tⁿ⟩ ≅ Span_k(1, t, t², ..., tⁿ⁻¹). Then an ideal I ⊂ k[t]/⟨tⁿ⟩ is a k-subspace, because for a, b ∈ k and x, y ∈ I, ax + by ∈ I by properties of an ideal. In particular, any decreasing chain of ideals is a decreasing chain of k-vector subspace in a finite dimensional vector space. Hence it must terminates for finite n > 0.

Remark: A commutative ring R together with a injective homomorphism $k \hookrightarrow R$ is called a commutative k-algebra. Via the inclusion, one realizes R as a k-vector space. Then what we have shown above is that a finite dimensional commutative k-algebra is always Artinian.

(d) Let R be an Artinian integral domain, pick any $x \in R \setminus 0$, then $\langle x \rangle \supset \langle x^2 \rangle \supset ...$ is a descending chain, so we have for large enough n, $\langle x^n \rangle = \langle x^{n+1} \rangle$. Therefore $x^n = x^{n+1}y$ for some y, so $x^n(1 - xy) = 0$, and we have xy = 1 by cancellation property of integral domains.

Remark: It turns out that every Artinian ring is Noetherian, but the converse is not true. This result is out of the scope of this course.

- 3. (a) First notice that both x² and x³ are irreducible, since there are no degree 1 polynomial in R, so by a degree argument, they are both irreducible. Now x⁶ can be factorize in two ways: x⁶ = x² · x² · x² = x³ · x³ gives two ways of factorizing x⁶ into irreducible elements, and these two factorizations do not differ by units. So R is not a UFD.
 - (b) Both x^2 and x^3 are not prime, as demonstrated by the above. x^2 divides $x^3 \cdot x^3$ but x^2 does not divide x^3 . Likewise x^3 divides $x^2 \cdot x^4$, but it divides neither x^2 nor x^4 .
 - (c) It is clear that the only divisors of x^2 are ± 1 and $\pm x^2$, similarly the only divisors of x^3 are ± 1 and $\pm x^3$. So $gcd(x^2, x^3) = 1$, but clearly it is impossible to have $1 = p(x)x^2 + q(x)x^3$.

Remark: In an integral domain R, it is called a GCD domain if for every pair of x, y, a gcd(x, y) exists. It is called Bézout domain if gcd exists and it is always a linear combination gcd(x, y) = ax + by, i.e. the Bézout's identity holds.

4. (a) Recall the ring Z[√-5] we saw from the lecture, we have seen that it is not a UFD because there are two ways of factorizing 9: (2 + √-5)(2 - √-5) = 9 = 3 ⋅ 3. Inspired by this, we can try to argue that a = 3(2 + √-5) and b = 9 do not have a gcd. One can make use of property of the norm function N(a + b√-5) = a² + 5b². (Note that it is not Euclidean norm, it is just a function.) If x|y then we have N(x)|N(y). One can write down all the factors of a, b respectively and note that there are no greatest common divisors.

More concretely, we have N(9) = 81, so its divisors must have norm equals to 1, 3, 9, 27, 81. Notice that if $N(a + b\sqrt{-5}) = (a + b\sqrt{-5})(a - b\sqrt{-5}) = 1$ then $a + b\sqrt{-5}$ is a unit. So we only have to consider cases when norm is equal to 3, 9 or 27. Notice that $a^2 + 5b^2 = 3$ or 27 have no solutions by reducing the equation

mod 5. So any nontrivial divisor of 9 must have norm 9. Then it is clear that its nontrivial divisor must be $\pm 3, \pm (2 + \sqrt{-5}), \pm (2 - \sqrt{-5})$. Similarly one can deduce that $3(2 + \sqrt{-5})$ has nontrivial divisor $\pm 3, \pm (2 + \sqrt{-5})$. It is clear that there is no greatest common divisor since 3 and $2 + \sqrt{-5}$ are not associate.

- (b) Let R be a UFD, and $x, y \in R$, we can write $x = u_x \cdot x_1 \dots x_n$ and $y = u_y \cdot y_1 \dots y_m$ where u_x, u_y are units and x_i, y_j are irreducible elements. Up to permutation and factoring units, we can rearrange the x_i 's and y_i 's so that $x_i = y_i$ for $i = 1, \dots, k$. This is because if two irreducible elements a, b have non-units common factors, then they are both associate to that factor. Otherwise if their common factors are all units, then gcd(x, y) = 1 by definition. Then the claim is that gcd(x, y) = $x_1 \dots x_k = y_1 \dots y_k$. To see why, suppose d is a common factor of x, y, then writing $d = u_d \cdot d_1 \dots d_l$, by unique factorization, we must have for each i that $d_i \sim x_j$ for some j and $d_i \sim y_{j'}$ for some j'. Since $x_j \sim y_{j'}$, we can always take $1 \le j = j' \le k$. By induction, we can deduce that $d|x_1 \dots x_k$. So it is indeed the gcd.
- (c) An element m' is called a common multiple of x, y if m' = ax = by for some a, b. Then an lcm of x, y (if exist) is a common multiple m of x, y such that m divides all common multiples of x, y.

Write $d = \gcd(x, y)$. Using the notation of part (b), we are going to prove that the following is an lcm of x, y: $m = (x_1...x_k)(x_{k+1}...x_n)(y_{k+1}...y_m)$. Then it is clear that dm = xy up to units. Suppose m' is a common multiple of x, y, again we look factorization of m' into irreducibles $m' = ur_1...r_p$. Again up to units, it contains all the x_i as factors since x|m'. We may assume that $x_i = r_i$ for i = 1, ...n. Then since y|m' and $y_j \not\sim x_i$ for j > k. We must have $y_j|r_{n+1}...r_p$ for j > k. So again up to units, we can write $y_{k+j} = r_{n+j}$. In other words, $m' = u(x_1...x_n)(y_{k+1}...y_m)...r_p$, so m|m'. So m is an lcm of x, y.

5. Since D is a PID, the maximal ideal m = ⟨t⟩ (such t is called a uniformizing parameter). For any x ∈ D \ {0}, since t⁰ = 1 always divides x, there is some largest non-negative integer k such that t^k|x. Then ⟨x⟩ ⊂ m^k = ⟨t^k⟩. We define ν(x) = k.

In fact, we have $\langle x \rangle = \langle t^k \rangle$, i.e. $x \sim t^k$. This is because $x = at^k$, since k is the largest, we know $t \nmid a$. In other words, $a \notin \langle t \rangle = \mathfrak{m}$. But every non-unit element must be contained in some maximal ideal by Zorn's lemma, which in the case of D being a DVR, must be \mathfrak{m} . So a, lying outside \mathfrak{m} , must a unit. In particular, this shows that every element in a DVR can be expressed as $x = at^i$ for some unit a and $i \ge 0$.

Now apply the above result to $x, y \in D$, $y \neq 0$. We may write $x = at^i$ and $y = bt^j$ for units a, b. Then $\nu(y) = j$. If $i \ge j$, then we may take $q = ab^{-1}t^{i-j}$, so x = qy and so r = 0. Otherwise i < j, so we might take q = 1 and so $r = x - y = t^i(a - bt^{j-i})$. Since t^i is the largest power dividing r, so $\nu(r) = i < j = \nu(y)$ as desired.

Finally, $xy = abt^{i+j}$ clearly satisfies $\nu(x) \le \nu(xy)$, as $i, j \ge 0$.

6. Using the norm function N(a + bi) = a² + b². We know that if a + bi divides 13, then N(a + bi) = a² + b² divides N(13) = 169. And since 13 is real, if a + bi is a factor, then so is a - bi. In other words, we must have a² + b² = 13. This gives a = 2, b = 3 or a = 3, b = 2. So we can factorize 13 = (3 + 2i)(3 - 2i). Notice that this is the same as (2 + 3i)(2 - 3i) since they are associate i(3 - 2i) = 2 + 3i. One can see that 2 + 3i is prime since N(2 + 3i) = 13 is prime.

7. All the previous exercises culminated to the following. Here the arrows mean we have strict inclusions between each class of objects. Above each arrow, there is a counterexample of an object that belongs to the larger class but not the smaller one, e.g. $\mathbb{Z}[i]$ is a Euclidean domain but not a field.

- (a) There are a lot to cover here. Let's briefly go over what the special rings are. $\mathbb{Z} + x\mathbb{Q}[x]$ is just the ring of polynomial in \mathbb{Q} so that the constant coefficient $a_0 \in \mathbb{Z}$. It is not a PID for similar reason as $\mathbb{Z}[x]$.
- (b) $\mathbb{Z}[x, y]$ is not a Bézout domain since x^2y, xy^2 has gcd given by xy. But clearly you cannot take linear combinations of higher degree polynomial to obtain lower degree ones. It is a GCD domain since it is a UFD.
- (c) For $\mathbb{Q}[x_1, x_2, x_3, ...]$ see Q1c.
- (d) A ring R is a UFD if and only if it is a GCD domain and satisfies ACCPI.
- (e) A commutative ring R is a Bézout domain if and only if all finitely generated ideals are principal. In a GCD domain (and hence for also for Bézout domains), any irreducible element is prime (try to prove it!). Hence, if R is a Bézout domain, then the following are equivalent: (i) R is a UFD, (ii) R is PID, (iii) R satisfies ACCPI, (iv) R is Noetherian.
- (f) For $\mathbb{Q}[x]/\langle x^n \rangle$ see Q2c.
- (g) $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ is a PID that is not a Euclidean domain. It is not easy to see this. Such rings are called quadratic integers, they are analogous to integers in \mathbb{Q} that lives in a field extension of \mathbb{Q} . They were a important part of 19th century number theory, heavily studied by Gauss, Kummer and Dedekind. These rings, called ring of integers are always a Dedekind domain, which roughly are domains where we have factorization of ideals into products of prime ideals. One remarkable property of Dedekind domain is that it is a UFD iff it is a PID iff it is a GCD domain. Studying whether a Dedekind domain is a PID is closely related to a notion called ideal class group, which is an important notion in algebraic number theory.
- (h) $\mathbb{Q}[x, y]$ is not a PID since $\langle x, y \rangle$ is not principal. It is Noetherian by a result of Hilbert. The Hilbert's basis theorem asserts that if R is a Noetherian ring, then R[x] is again Noetherian.
- (i) O_Q sometimes also denoted as Z is called the algebraic integers. It contains all roots of *monic* polynomial xⁿ + a_{n-1}xⁿ⁻¹ + ... + a₁x + a₀, i.e. polynomial with integer coefficients such that the leading coefficient is 1. It is not trivial at all that it forms a GCD domain (actually a Bézout domain). But we can see that it is not a UFD since in fact it has no irreducible elements: if z ∈ Z, say p(z) = 0 for some monic p ∈ Z[x], then √z satisfies p(x²) ∈ Z[x] which is also monic, so √z ∈ Z is a

divisor of z. Note that z is a unit if the polynomial p(x) has constant coefficient 1, so z is a unit if and only if \sqrt{z} is a unit. This implies that if z is not a unit, it is never irreducible. Thus, there is no unique factorization.