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• The tutorial solutions are written for reference and proofs will be sketched briefly. You
should try to fill in the details as an exercise. Please send an email to echlam@math.cuhk.edu.hk
if you have any further questions.

• Important: The extra content of this tutorial will not appear in the final exam.

1. (a) Let R be a nonzero Noetherian ring, if R has no maximal ideal, then we can in-
ductively find an increasing chain of ideals I1 ⊂ I2 ⊂ ... such that Ik is strictly
contained in Ik+1. This is because each Ik is not a maximal ideal, so it is strictly
contained in some proper ideal Ik+1. However, this contradicts with the ascending
chain condition of a Noetherian ring (see HW10 Q3).

(b) Proof using (FBC): Let R be a PID, any ideal I is principal, so it is generated by
one element, in particular it is finitely generated.
Proof using (ACC): Let R be a PID, let I1 ⊂ I2 ⊂ ... be an increasing chain of ideals
in R. Then each Ik = ⟨ak⟩ for some ak ∈ R such that ak+1|ak. Suppose that this
chain of ideals does not terminates for some finite n > 0, then by replacing {In}
by a subsequence if necessary, we might assume that ak+1 | ak but ak and ak+1 are
not associate for all k (i.e. ak = bk · ak+1 for bk not a unit. Note that this implies
that a1 can be written as a product of an arbitrarily large numbers of non-units. This
contradicts with unique factorization of a0. This is because the number of non-units
factors appearing in the unique factorization of a0 is constant.

(c) Let k be a field, consider k[x1, x2, ...] the polynomial ring on countably many vari-
ables. Note that k[x1, ..., xn] is a UFD for any n > 0, since R is a UFD implies
that R[t] is a UFD. So for any polynomial f in k[x1, x2, ...], it lies in the sub-
ring of k[x1, ..., xn] for some large enough n, then f regarded as a polynomial in
k[x1, ..., xn] can be uniquely written as products of polynomials, up to units. Such
unique product still remains to be unique in the original ring because polynomials
involving the variable xN for N > n clearly does not appear in any factor of f .
On the other hand, k[x1, x2, ...] is no Noetherian. Because ⟨x1⟩ ⊂ ⟨x1, x2⟩ ⊂
⟨x1, x2, x3⟩ ⊂ ... is an increasing chain of ideals that does not terminate at finite
n > 0.

(d) Suppose that φ : R → R is a surjective homomorphism, consider Ik = kerφk, then
I1 ⊂ I2 ⊂ ... is an increasing chain of ideals. So by Noetherian property, it must
terminate for some n > 0. Then kerφn = kerφn+1. Now φn+1(x) = 0 implies that
φn(x) = 0. Now suppose that φ(x) = 0, then by surjectivity x = φn(y), so that
φn+1(y) = 0, but this of course implies that x = φn(y) = 0.

2. (a) By Q1b, Z is Noetherian.
On the other hand, the chain of ideals J1 ⊃ J2 ⊃ ... defined by Jk = 2kZ is a
decreasing sequence of ideals which does not terminate at finite n. So Z is not
Artinian.



(b) By Q1b, k[t] is Noetherian.
Consider the decreasing chain J1 ⊃ J2 ⊃ ... defined by Jk = ⟨tk⟩. This never
terminates for finite n > 0, so it is not Artinian.

(c) Note that we have a homomorphism k ↪→ k[t]/⟨tn⟩, which realizes k[t]/⟨tn⟩ as
a finite dimensional k-vector space. One can simply see that as vector spaces,
k[t]/⟨tn⟩ ∼= Spank(1, t, t

2, ..., tn−1). Then an ideal I ⊂ k[t]/⟨tn⟩ is a k-subspace,
because for a, b ∈ k and x, y ∈ I , ax + by ∈ I by properties of an ideal. In partic-
ular, any decreasing chain of ideals is a decreasing chain of k-vector subspace in a
finite dimensional vector space. Hence it must terminates for finite n > 0.
Remark: A commutative ring R together with a injective homomorphism k ↪→ R
is called a commutative k-algbera. Via the inclusion, one realizes R as a k-vector
space. Then what we have shown above is that a finite dimensional commutative
k-algebra is always Artinian.

(d) Let R be an Artinian integral domain, pick any x ∈ R \ 0, then ⟨x⟩ ⊃ ⟨x2⟩ ⊃ ...
is a descending chain, so we have for large enough n, ⟨xn⟩ = ⟨xn+1⟩. Therefore
xn = xn+1y for some y, so xn(1 − xy) = 0, and we have xy = 1 by cancellation
property of integral domains.

Remark: It turns out that every Artinian ring is Noetherian, but the converse is not true.
This result is out of the scope of this course.

3. (a) First notice that both x2 and x3 are irreducible, since there are no degree 1 poly-
nomial in R, so by a degree argument, they are both irreducible. Now x6 can be
factorize in two ways: x6 = x2 · x2 · x2 = x3 · x3 gives two ways of factorizing x6

into irreducible elements, and these two factorizations do not differ by units. So R
is not a UFD.

(b) Both x2 and x3 are not prime, as demonstrated by the above. x2 divides x3 · x3 but
x2 does not divide x3. Likewise x3 divides x2 · x4, but it divides neither x2 nor x4.

(c) It is clear that the only divisors of x2 are ±1 and ±x2, similarly the only divisors
of x3 are ±1 and ±x3. So gcd(x2, x3) = 1, but clearly it is impossible to have
1 = p(x)x2 + q(x)x3.
Remark: In an integral domain R, it is called a GCD domain if for every pair of x, y,
a gcd(x, y) exists. It is called Bézout domain if gcd exists and it is always a linear
combination gcd(x, y) = ax+ by, i.e. the Bézout’s identity holds.

4. (a) Recall the ring Z[
√
−5] we saw from the lecture, we have seen that it is not a UFD

because there are two ways of factorizing 9: (2 +
√
−5)(2 −

√
−5) = 9 = 3 · 3.

Inspired by this, we can try to argue that a = 3(2 +
√
−5) and b = 9 do not

have a gcd. One can make use of property of the norm function N(a + b
√
−5) =

a2 + 5b2. (Note that it is not Euclidean norm, it is just a function.) If x|y then we
have N(x)|N(y). One can write down all the factors of a, b respectively and note
that there are no greatest common divisors.
More concretely, we have N(9) = 81, so its divisors must have norm equals to
1, 3, 9, 27, 81. Notice that if N(a + b

√
−5) = (a + b

√
−5)(a − b

√
−5) = 1 then

a + b
√
−5 is a unit. So we only have to consider cases when norm is equal to 3, 9

or 27. Notice that a2 + 5b2 = 3 or 27 have no solutions by reducing the equation



mod 5. So any nontrivial divisor of 9 must have norm 9. Then it is clear that
its nontrivial divisor must be ±3,±(2 +

√
−5),±(2 −

√
−5). Similarly one can

deduce that 3(2+
√
−5 has nontrivial divisor ±3,±(2+

√
−5). It is clear that there

is no greatest common divisor since 3 and 2 +
√
−5 are not associate.

(b) Let R be a UFD, and x, y ∈ R, we can write x = ux · x1...xn and y = uy · y1...ym
where ux, uy are units and xi, yj are irreducible elements. Up to permutation and
factoring units, we can rearrange the xi’s and yi’s so that xi = yi for i = 1, ..., k.
This is because if two irreducible elements a, b have non-units common factors,
then they are both associate to that factor. Otherwise if their common factors are
all units, then gcd(x, y) = 1 by definition. Then the claim is that gcd(x, y) =
x1...xk = y1...yk. To see why, suppose d is a common factor of x, y, then writing
d = ud · d1...dl, by unique factorization, we must have for each i that di ∼ xj for
some j and di ∼ yj′ for some j′. Since xj ∼ yj′ , we can always take 1 ≤ j = j′ ≤ k.
By induction, we can deduce that d|x1...xk. So it is indeed the gcd.

(c) An element m′ is called a common multiple of x, y if m′ = ax = by for some a, b.
Then an lcm of x, y (if exist) is a common multiple m of x, y such that m divides all
common multiples of x, y.
Write d = gcd(x, y). Using the notation of part (b), we are going to prove that the
following is an lcm of x, y: m = (x1...xk)(xk+1...xn)(yk+1...ym). Then it is clear
that dm = xy up to units. Suppose m′ is a common multiple of x, y, again we look
factorization of m′ into irreducibles m′ = ur1...rp. Again up to units, it contains all
the xi as factors since x|m′. We may assume that xi = ri for i = 1, ...n. Then since
y|m′ and yj ̸∼ xi for j > k. We must have yj|rn+1...rp for j > k. So again up to
units, we can write yk+j = rn+j . In other words, m′ = u(x1...xn)(yk+1...ym)...rp,
so m|m′. So m is an lcm of x, y.

5. Since D is a PID, the maximal ideal m = ⟨t⟩ (such t is called a uniformizing parameter).
For any x ∈ D \ {0}, since t0 = 1 always divides x, there is some largest non-negative
integer k such that tk|x. Then ⟨x⟩ ⊂ mk = ⟨tk⟩. We define ν(x) = k.

In fact, we have ⟨x⟩ = ⟨tk⟩, i.e. x ∼ tk. This is because x = atk, since k is the largest, we
know t ∤ a. In other words, a ̸∈ ⟨t⟩ = m. But every non-unit element must be contained
in some maximal ideal by Zorn’s lemma, which in the case of D being a DVR, must be
m. So a, lying outside m, must a unit. In particular, this shows that every element in a
DVR can be expressed as x = ati for some unit a and i ≥ 0.

Now apply the above result to x, y ∈ D, y ̸= 0. We may write x = ati and y = btj for
units a, b. Then ν(y) = j. If i ≥ j, then we may take q = ab−1ti−j , so x = qy and so
r = 0. Otherwise i < j, so we might take q = 1 and so r = x− y = ti(a− btj−i). Since
ti is the largest power dividing r, so ν(r) = i < j = ν(y) as desired.

Finally, xy = abti+j clearly satisfies ν(x) ≤ ν(xy), as i, j ≥ 0.

6. Using the norm function N(a + bi) = a2 + b2. We know that if a + bi divides 13, then
N(a + bi) = a2 + b2 divides N(13) = 169. And since 13 is real, if a + bi is a factor,
then so is a− bi. In other words, we must have a2 + b2 = 13. This gives a = 2, b = 3 or
a = 3, b = 2. So we can factorize 13 = (3 + 2i)(3 − 2i). Notice that this is the same as
(2 + 3i)(2 − 3i) since they are associate i(3 − 2i) = 2 + 3i. One can see that 2 + 3i is
prime since N(2 + 3i) = 13 is prime.



7. All the previous exercises culminated to the following. Here the arrows mean we have
strict inclusions between each class of objects. Above each arrow, there is a counterex-
ample of an object that belongs to the larger class but not the smaller one, e.g. Z[i] is a
Euclidean domain but not a field.

ACCPI Noetherian Artinian

IntDom GCDdomain UFD PID ED Fields

Bézoutdomain

Q[x1,x2,x3,...] Z

Z[
√
−5] OQ

Z[
√
−5]

Z[x]

Z+xQ[x]

Q[x,y]

Z[ 1+
√
−19
2

] Z[i]

Q[x]/⟨xn⟩

Z[x,y]

(a) There are a lot to cover here. Let’s briefly go over what the special rings are. Z +
xQ[x] is just the ring of polynomial in Q so that the constant coefficient a0 ∈ Z. It
is not a PID for similar reason as Z[x].

(b) Z[x, y] is not a Bézout domain since x2y, xy2 has gcd given by xy. But clearly you
cannot take linear combinations of higher degree polynomial to obtain lower degree
ones. It is a GCD domain since it is a UFD.

(c) For Q[x1, x2, x3, ...] see Q1c.

(d) A ring R is a UFD if and only if it is a GCD domain and satisfies ACCPI.

(e) A commutative ring R is a Bézout domain if and only if all finitely generated ideals
are principal. In a GCD domain (and hence for also for Bézout domains), any irre-
ducible element is prime (try to prove it!). Hence, if R is a Bézout domain, then the
following are equivalent: (i) R is a UFD, (ii) R is PID, (iii) R satisfies ACCPI, (iv)
R is Noetherian.

(f) For Q[x]/⟨xn⟩ see Q2c.

(g) Z[1+
√
−19
2

] is a PID that is not a Euclidean domain. It is not easy to see this. Such
rings are called quadratic integers, they are analogous to integers in Q that lives in
a field extension of Q. They were a important part of 19th century number theory,
heavily studied by Gauss, Kummer and Dedekind. These rings, called ring of in-
tegers are always a Dedekind domain, which roughly are domains where we have
factorization of ideals into products of prime ideals. One remarkable property of
Dedekind domain is that it is a UFD iff it is a PID iff it is a GCD domain. Studying
whether a Dedekind domain is a PID is closely related to a notion called ideal class
group, which is an important notion in algebraic number theory.

(h) Q[x, y] is not a PID since ⟨x, y⟩ is not principal. It is Noetherian by a result of
Hilbert. The Hilbert’s basis theorem asserts that if R is a Noetherian ring, then R[x]
is again Noetherian.

(i) OQ sometimes also denoted as Z is called the algebraic integers. It contains all roots
of monic polynomial xn + an−1x

n−1 + ... + a1x + a0, i.e. polynomial with integer
coefficients such that the leading coefficient is 1. It is not trivial at all that it forms
a GCD domain (actually a Bézout domain). But we can see that it is not a UFD
since in fact it has no irreducible elements: if z ∈ Z, say p(z) = 0 for some monic
p ∈ Z[x], then

√
z satisfies p(x2) ∈ Z[x] which is also monic, so

√
z ∈ Z is a



divisor of z. Note that z is a unit if the polynomial p(x) has constant coefficient 1,
so z is a unit if and only if

√
z is a unit. This implies that if z is not a unit, it is never

irreducible. Thus, there is no unique factorization.


